Admissible, consistent multiple testing with applications including variable selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Testing and the Variable-Selection Problem

We study the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. Specifically, we compare empirical-Bayes (EB) and fully Bayesian (FB) approaches for handling the prior inclusion probability p required by these priors. Several new information-theoretic results, along with extensive computer experiments, lead us to conclude that the empirical-Bayes...

متن کامل

Multiple Testing, Empirical Bayes, and the Variable-Selection Problem

This paper studies the multiplicity-correction effect of standard Bayesian variableselection priors in linear regression. The first goal of the paper is to clarify when, and how, multiplicity correction is automatic in Bayesian analysis, and contrast this multiplicity correction with the Bayesian Ockham’s-razor effect. Secondly, we contrast empirical-Bayes and fully Bayesian approaches to varia...

متن کامل

Regularizing Lasso: a Consistent Variable Selection Method

Table 1 provides the average computational time (in minutes) for the eight methods under the simulation settings. SIS clearly requires the least computational effort, whereas RLASSO as well as Scout require much longer computational time. But all methods except RLASSO(CLIME) can be computed under a reasonable amount of time for p = 5000 and n = 100. RLASSO(CLIME) takes much longer because of in...

متن کامل

Self-consistent multiple testing procedures

We study the control of the false discovery rate (FDR) for a general class of multiple testing procedures. We introduce a general condition, called “self-consistency”, on the set of hypotheses rejected by the procedure, which we show is sufficient to ensure the control of the corresponding false discovery rate under various conditions on the distribution of the pvalues. Maximizing the size of t...

متن کامل

Consistent selection of tuning parameters via variable selection stability

Penalized regression models are popularly used in high-dimensional data analysis to conduct variable selection and model fitting simultaneously. Whereas success has been widely reported in literature, their performances largely depend on the tuning parameters that balance the trade-off between model fitting and model sparsity. Existing tuning criteria mainly follow the route of minimizing the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2009

ISSN: 1935-7524

DOI: 10.1214/09-ejs391